bart.bart#
Module: bart.bart#
Inheritance diagram for ISLP.bart.bart:
Classes#
BART#
- class ISLP.bart.bart.BART(num_trees=200, num_particles=10, max_stages=5000, split_prob=<function BART.<lambda>>, min_depth=0, std_scale=2, split_prior=None, ndraw=10, burnin=100, sigma_prior=(5, 0.9), num_quantile=50, random_state=None, n_jobs=-1)#
- Bases: - BaseEnsemble,- RegressorMixin- Particle Gibbs BART sampling step - Parameters:
- num_particlesint
- Number of particles for the conditional SMC sampler. Defaults to 10 
- max_stagesint
- Maximum number of iterations of the conditional SMC sampler. Defaults to 100. 
 
 - Methods - Get metadata routing of this object. - get_params([deep])- Get parameters for this estimator. - init_particles(base_particle, sigmasq, resid)- Initialize particles - score(X, y[, sample_weight])- Return the coefficient of determination of the prediction. - set_fit_request(*[, sample_weight])- Request metadata passed to the - fitmethod.- set_params(**params)- Set the parameters of this estimator. - set_score_request(*[, sample_weight])- Request metadata passed to the - scoremethod.- fit - predict - staged_predict - Notes - This sampler is inspired by the [Lakshminarayanan2015] Particle Gibbs sampler, but introduces several changes. The changes will be properly documented soon. - References [Lakshminarayanan2015]- Lakshminarayanan, B. and Roy, D.M. and Teh, Y. W., (2015), Particle Gibbs for Bayesian Additive Regression Trees. ArviX, link - __init__(num_trees=200, num_particles=10, max_stages=5000, split_prob=<function BART.<lambda>>, min_depth=0, std_scale=2, split_prior=None, ndraw=10, burnin=100, sigma_prior=(5, 0.9), num_quantile=50, random_state=None, n_jobs=-1)#
 - fit(X, Y, sample_weight=None)#
 - get_metadata_routing()#
- Get metadata routing of this object. - Please check User Guide on how the routing mechanism works. - Returns:
- routingMetadataRequest
- A - MetadataRequestencapsulating routing information.
 
 
 - get_params(deep=True)#
- Get parameters for this estimator. - Parameters:
- deepbool, default=True
- If True, will return the parameters for this estimator and contained subobjects that are estimators. 
 
- Returns:
- paramsdict
- Parameter names mapped to their values. 
 
 
 - init_particles(base_particle: ParticleTree, sigmasq: float, resid: ndarray) ndarray#
- Initialize particles 
 - predict(X)#
 - score(X, y, sample_weight=None)#
- Return the coefficient of determination of the prediction. - The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares - ((y_true - y_pred)** 2).sum()and \(v\) is the total sum of squares- ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.- Parameters:
- Xarray-like of shape (n_samples, n_features)
- Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape - (n_samples, n_samples_fitted), where- n_samples_fittedis the number of samples used in the fitting for the estimator.
- yarray-like of shape (n_samples,) or (n_samples, n_outputs)
- True values for X. 
- sample_weightarray-like of shape (n_samples,), default=None
- Sample weights. 
 
- Returns:
- scorefloat
- \(R^2\) of - self.predict(X)w.r.t. y.
 
 - Notes - The \(R^2\) score used when calling - scoreon a regressor uses- multioutput='uniform_average'from version 0.23 to keep consistent with default value of- r2_score(). This influences the- scoremethod of all the multioutput regressors (except for- MultiOutputRegressor).
 - set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') BART#
- Request metadata passed to the - fitmethod.- Note that this method is only relevant if - enable_metadata_routing=True(see- sklearn.set_config()). Please see User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- fitif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- fit.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Note - This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a - Pipeline. Otherwise it has no effect.- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - sample_weightparameter in- fit.
 
- Returns:
- selfobject
- The updated object. 
 
 
 - set_params(**params)#
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as - Pipeline). The latter have parameters of the form- <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters:
- **paramsdict
- Estimator parameters. 
 
- Returns:
- selfestimator instance
- Estimator instance. 
 
 
 - set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') BART#
- Request metadata passed to the - scoremethod.- Note that this method is only relevant if - enable_metadata_routing=True(see- sklearn.set_config()). Please see User Guide on how the routing mechanism works.- The options for each parameter are: - True: metadata is requested, and passed to- scoreif provided. The request is ignored if metadata is not provided.
- False: metadata is not requested and the meta-estimator will not pass it to- score.
- None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.
- str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
 - The default ( - sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.- Added in version 1.3. - Note - This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a - Pipeline. Otherwise it has no effect.- Parameters:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
- Metadata routing for - sample_weightparameter in- score.
 
- Returns:
- selfobject
- The updated object. 
 
 
 - staged_predict(X, start_idx=0)#
 
SampleSplittingVariable#
- class ISLP.bart.bart.SampleSplittingVariable(alpha_prior, random_state)#
- Bases: - object- Methods - rvs - __init__(alpha_prior, random_state)#
- Sample splitting variables proportional to alpha_prior. - This is equivalent as sampling weights from a Dirichlet distribution with alpha_prior parameter and then using those weights to sample from the available spliting variables. This enforce sparsity. 
 - rvs()#
 
