bart.bart#

Module: bart.bart#

Inheritance diagram for ISLP.bart.bart:

digraph inheritancee29b06827a { bgcolor=transparent; rankdir=LR; size="8.0, 12.0"; "_repr_html.base.ReprHTMLMixin" [fillcolor=white,fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5),filled",tooltip="Mixin to handle consistently the HTML representation."]; "bart.bart.BART" [URL="#ISLP.bart.bart.BART",fillcolor=white,fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5),filled",target="_top",tooltip="Particle Gibbs BART sampling step"]; "ensemble._base.BaseEnsemble" -> "bart.bart.BART" [arrowsize=0.5,style="setlinewidth(0.5)"]; "sklearn.base.RegressorMixin" -> "bart.bart.BART" [arrowsize=0.5,style="setlinewidth(0.5)"]; "bart.bart.SampleSplittingVariable" [URL="#ISLP.bart.bart.SampleSplittingVariable",fillcolor=white,fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5),filled",target="_top"]; "ensemble._base.BaseEnsemble" [fillcolor=white,fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5),filled",tooltip="Base class for all ensemble classes."]; "sklearn.base.MetaEstimatorMixin" -> "ensemble._base.BaseEnsemble" [arrowsize=0.5,style="setlinewidth(0.5)"]; "sklearn.base.BaseEstimator" -> "ensemble._base.BaseEnsemble" [arrowsize=0.5,style="setlinewidth(0.5)"]; "sklearn.base.BaseEstimator" [URL="http://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator",fillcolor=white,fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5),filled",target="_top",tooltip="Base class for all estimators in scikit-learn."]; "_repr_html.base.ReprHTMLMixin" -> "sklearn.base.BaseEstimator" [arrowsize=0.5,style="setlinewidth(0.5)"]; "sklearn.base.MetaEstimatorMixin" [URL="http://scikit-learn.org/stable/modules/generated/sklearn.base.MetaEstimatorMixin.html#sklearn.base.MetaEstimatorMixin",fillcolor=white,fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5),filled",target="_top",tooltip="Mixin class for all meta estimators in scikit-learn."]; "sklearn.base.RegressorMixin" [URL="http://scikit-learn.org/stable/modules/generated/sklearn.base.RegressorMixin.html#sklearn.base.RegressorMixin",fillcolor=white,fontname="Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans",fontsize=10,height=0.25,shape=box,style="setlinewidth(0.5),filled",target="_top",tooltip="Mixin class for all regression estimators in scikit-learn."]; }

Classes#

BART#

class ISLP.bart.bart.BART(num_trees=200, num_particles=10, max_stages=5000, split_prob=<function BART.<lambda>>, min_depth=0, std_scale=2, split_prior=None, ndraw=10, burnin=100, sigma_prior=(5, 0.9), num_quantile=50, random_state=None, n_jobs=-1)#

Bases: BaseEnsemble, RegressorMixin

Particle Gibbs BART sampling step

Parameters:
num_particlesint

Number of particles for the conditional SMC sampler. Defaults to 10

max_stagesint

Maximum number of iterations of the conditional SMC sampler. Defaults to 100.

Methods

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

init_particles(base_particle, sigmasq, resid)

Initialize particles

score(X, y[, sample_weight])

Return coefficient of determination on test data.

set_fit_request(*[, sample_weight])

Configure whether metadata should be requested to be passed to the fit method.

set_params(**params)

Set the parameters of this estimator.

set_score_request(*[, sample_weight])

Configure whether metadata should be requested to be passed to the score method.

fit

predict

staged_predict

Notes

This sampler is inspired by the [Lakshminarayanan2015] Particle Gibbs sampler, but introduces several changes. The changes will be properly documented soon.

References

[Lakshminarayanan2015]

Lakshminarayanan, B. and Roy, D.M. and Teh, Y. W., (2015), Particle Gibbs for Bayesian Additive Regression Trees. ArviX, link

__init__(num_trees=200, num_particles=10, max_stages=5000, split_prob=<function BART.<lambda>>, min_depth=0, std_scale=2, split_prior=None, ndraw=10, burnin=100, sigma_prior=(5, 0.9), num_quantile=50, random_state=None, n_jobs=-1)#
fit(X, Y, sample_weight=None)#
get_metadata_routing()#

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:
routingMetadataRequest

A MetadataRequest encapsulating routing information.

get_params(deep=True)#

Get parameters for this estimator.

Parameters:
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

init_particles(base_particle: ParticleTree, sigmasq: float, resid: ndarray) ndarray#

Initialize particles

predict(X)#
score(X, y, sample_weight=None)#

Return coefficient of determination on test data.

The coefficient of determination, \(R^2\), is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.

Parameters:
Xarray-like of shape (n_samples, n_features)

Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.

yarray-like of shape (n_samples,) or (n_samples, n_outputs)

True values for X.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

Returns:
scorefloat

\(R^2\) of self.predict(X) w.r.t. y.

Notes

The \(R^2\) score used when calling score on a regressor uses multioutput='uniform_average' from version 0.23 to keep consistent with default value of r2_score(). This influences the score method of all the multioutput regressors (except for MultiOutputRegressor).

set_fit_request(*, sample_weight: bool | None | str = '$UNCHANGED$') BART#

Configure whether metadata should be requested to be passed to the fit method.

Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with enable_metadata_routing=True (see sklearn.set_config()). Please check the User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version 1.3.

Parameters:
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in fit.

Returns:
selfobject

The updated object.

set_params(**params)#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Estimator parameters.

Returns:
selfestimator instance

Estimator instance.

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') BART#

Configure whether metadata should be requested to be passed to the score method.

Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with enable_metadata_routing=True (see sklearn.set_config()). Please check the User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version 1.3.

Parameters:
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in score.

Returns:
selfobject

The updated object.

staged_predict(X, start_idx=0)#

SampleSplittingVariable#

class ISLP.bart.bart.SampleSplittingVariable(alpha_prior, random_state)#

Bases: object

Methods

rvs

__init__(alpha_prior, random_state)#

Sample splitting variables proportional to alpha_prior.

This is equivalent as sampling weights from a Dirichlet distribution with alpha_prior parameter and then using those weights to sample from the available spliting variables. This enforce sparsity.

rvs()#