Credit Card Balance Data#
A simulated data set containing information on 400 customers.
Income
: Income in $1,000’sLimit
: Credit limitRating
: Credit ratingCards
: Number of credit cardsAge
: Age in yearsEducation
: Education in yearsOwn
: A factor with levels No and Yes indicating whether the individual owns a homeStudent
: A factor with levels No and Yes indicating whether the individual is a studentMarried
: A factor with levels No and Yes indicating whether the individual is marriedRegion
: A factor with levels East, South, and West indicating the individual’s geographical locationBalance
: Average credit card balance in $
Source#
Simulated data. Many thanks to Albert Kim for helpful suggestions, and for supplying a draft of the man documentation page on Oct 19, 2017.
from ISLP import load_data
Credit = load_data('Credit')
Credit.columns
Index(['ID', 'Income', 'Limit', 'Rating', 'Cards', 'Age', 'Education',
'Gender', 'Student', 'Married', 'Ethnicity', 'Balance'],
dtype='object')
Credit.shape
(400, 12)
Credit.columns
Index(['ID', 'Income', 'Limit', 'Rating', 'Cards', 'Age', 'Education',
'Gender', 'Student', 'Married', 'Ethnicity', 'Balance'],
dtype='object')
Credit.describe().iloc[:,:4]
ID | Income | Limit | Rating | |
---|---|---|---|---|
count | 400.000000 | 400.000000 | 400.000000 | 400.000000 |
mean | 200.500000 | 45.218885 | 4735.600000 | 354.940000 |
std | 115.614301 | 35.244273 | 2308.198848 | 154.724143 |
min | 1.000000 | 10.354000 | 855.000000 | 93.000000 |
25% | 100.750000 | 21.007250 | 3088.000000 | 247.250000 |
50% | 200.500000 | 33.115500 | 4622.500000 | 344.000000 |
75% | 300.250000 | 57.470750 | 5872.750000 | 437.250000 |
max | 400.000000 | 186.634000 | 13913.000000 | 982.000000 |