Boston Data

Contents

Boston Data#

A data set containing housing values in 506 suburbs of Boston.

  • crim: per capita crime rate by town.

  • zn: proportion of residential land zoned for lots over 25,000 sq.ft.

  • indus: proportion of non-retail business acres per town.

  • chas: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).

  • nox: nitrogen oxides concentration (parts per 10 million).

  • rm: average number of rooms per dwelling.

  • age: proportion of owner-occupied units built prior to 1940.

  • dis: weighted mean of distances to five Boston employment centres.

  • rad: index of accessibility to radial highways.

  • tax: full-value property-tax rate per $10,000.

  • ptratio: pupil-teacher ratio by town.

  • lstat: lower status of the population (percent).

  • medv: median value of owner-occupied homes in $1000s.

Notes#

This dataset was obtained from, and is slightly modified from, the Boston dataset that is part of the R library MASS. References are available in the MASS library.

from ISLP import load_data
Boston = load_data('Boston')
Boston.columns
Index(['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad', 'tax',
       'ptratio', 'lstat', 'medv'],
      dtype='object')
Boston.shape
(506, 13)
Boston.columns
Index(['crim', 'zn', 'indus', 'chas', 'nox', 'rm', 'age', 'dis', 'rad', 'tax',
       'ptratio', 'lstat', 'medv'],
      dtype='object')
Boston.describe()
crim zn indus chas nox rm age dis rad tax ptratio lstat medv
count 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000
mean 3.613524 11.363636 11.136779 0.069170 0.554695 6.284634 68.574901 3.795043 9.549407 408.237154 18.455534 12.653063 22.532806
std 8.601545 23.322453 6.860353 0.253994 0.115878 0.702617 28.148861 2.105710 8.707259 168.537116 2.164946 7.141062 9.197104
min 0.006320 0.000000 0.460000 0.000000 0.385000 3.561000 2.900000 1.129600 1.000000 187.000000 12.600000 1.730000 5.000000
25% 0.082045 0.000000 5.190000 0.000000 0.449000 5.885500 45.025000 2.100175 4.000000 279.000000 17.400000 6.950000 17.025000
50% 0.256510 0.000000 9.690000 0.000000 0.538000 6.208500 77.500000 3.207450 5.000000 330.000000 19.050000 11.360000 21.200000
75% 3.677083 12.500000 18.100000 0.000000 0.624000 6.623500 94.075000 5.188425 24.000000 666.000000 20.200000 16.955000 25.000000
max 88.976200 100.000000 27.740000 1.000000 0.871000 8.780000 100.000000 12.126500 24.000000 711.000000 22.000000 37.970000 50.000000