Bike sharing data#
This data set contains the hourly and daily count of rental bikes between years 2011 and 2012 in Capital bikeshare system, along with weather and seasonal information.
season
: Season of the year, coded as Winter=1, Spring=2, Summer=3, Fall=4.mnth
: Month of the year, coded as a factor.day
: Day of the year, from 1 to 365hr
: Hour of the day, coded as a factor from 0 to 23.holiday
: Is it a holiday? Yes=1, No=0.weekday
: Day of the week, coded from 0 to 6, where Sunday=0, Monday=1, Tuesday=2, etc.workingday
: Is it a work day? Yes=1, No=0.weathersit
: Weather, coded as a factor.temp
: Normalized temperature in Celsius. The values are derived via(t-t_min)/(t_max-t_min)
,t_min
=-8,t_max
=+39.atemp
: Normalized feeling temperature in Celsius. The values are derived via(t-t_min)/(t_max-t_min)
,t_min
=-16,t_max
=+50.hum
: Normalized humidity. The values are divided to 100 (max).windspeed
: Normalized wind speed. The values are divided by 67 (max).casual
: Number of casual bikers.registered
: Number of registered bikers.bikers
: Total number of bikers.
Source#
The UCI Machine Learning Repository.
from ISLP import load_data
Bikeshare = load_data('Bikeshare')
Bikeshare.columns
Index(['season', 'mnth', 'day', 'hr', 'holiday', 'weekday', 'workingday',
'weathersit', 'temp', 'atemp', 'hum', 'windspeed', 'casual',
'registered', 'bikers'],
dtype='object')
Bikeshare.shape
(8645, 15)
Bikeshare.columns
Index(['season', 'mnth', 'day', 'hr', 'holiday', 'weekday', 'workingday',
'weathersit', 'temp', 'atemp', 'hum', 'windspeed', 'casual',
'registered', 'bikers'],
dtype='object')
Bikeshare.describe().iloc[:,:4]
season | day | holiday | weekday | |
---|---|---|---|---|
count | 8645.000000 | 8645.00000 | 8645.000000 | 8645.000000 |
mean | 2.513592 | 184.39572 | 0.027646 | 3.012724 |
std | 1.105477 | 104.82334 | 0.163966 | 2.006370 |
min | 1.000000 | 1.00000 | 0.000000 | 0.000000 |
25% | 2.000000 | 94.00000 | 0.000000 | 1.000000 |
50% | 3.000000 | 185.00000 | 0.000000 | 3.000000 |
75% | 3.000000 | 275.00000 | 0.000000 | 5.000000 |
max | 4.000000 | 365.00000 | 1.000000 | 6.000000 |