Portfolio Data

Portfolio Data#

A simple simulated data set containing 100 returns for each of two assets, X and Y. The data is used to estimate the optimal fraction to invest in each asset to minimize investment risk of the combined portfolio. One can then use the Bootstrap to estimate the standard error of this estimate.

  • X: Returns for Asset X

  • Y: Returns for Asset Y

from ISLP import load_data
Portfolio = load_data('Portfolio')
Portfolio.columns
Index(['X', 'Y'], dtype='object')
Portfolio.shape
(100, 2)
Portfolio.columns
Index(['X', 'Y'], dtype='object')
Portfolio.describe()
X Y
count 100.000000 100.000000
mean -0.077132 -0.096945
std 1.062376 1.143782
min -2.432764 -2.725281
25% -0.888474 -0.885722
50% -0.268889 -0.228708
75% 0.558093 0.806708
max 2.460336 2.565985